IL-17 Mediates Immunopathology in the Absence of IL-10 Following Leishmania major Infection

نویسندگان

  • Claudia Gonzalez-Lombana
  • Ciara Gimblet
  • Olivia Bacellar
  • Walker W. Oliveira
  • Sara Passos
  • Lucas P. Carvalho
  • Michael Goldschmidt
  • Edgar M. Carvalho
  • Phillip Scott
چکیده

Leishmaniasis, resulting from infection with the protozoan parasite Leishmania, consists of a wide spectrum of clinical manifestations, from healing cutaneous lesions to fatal visceral infections. A particularly severe form of cutaneous leishmaniasis, termed mucosal leishmaniasis, exhibits decreased IL-10 levels and an exaggerated inflammatory response that perpetuates the disease. Using a mouse model of leishmaniasis, we investigated what cytokines contribute to increased pathology when IL-10-mediated regulation is absent. Leishmania major infected C57BL/6 mice lacking IL-10 regulation developed larger lesions than controls, but fewer parasites. Both IFN-γ and IL-17 levels were substantially elevated in mice lacking the capacity to respond to IL-10. IFN-γ promoted an increased infiltration of monocytes, while IL-17 contributed to an increase in neutrophils. Surprisingly, however, we found that IFN-γ did not contribute to increased pathology, but instead regulated the IL-17 response. Thus, blocking IFN-γ led to a significant increase in IL-17, neutrophils and disease. Similarly, the production of IL-17 by cells from leishmaniasis patients was also regulated by IL-10 and IFN-γ. Additional studies found that the IL-1 receptor was required for both the IL-17 response and increased pathology. Therefore, we propose that regulating IL-17, possibly by downregulating IL-1β, may be a useful approach for controlling immunopathology in leishmaniasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STAT6 Mediates Footpad Immunopathology in the Absence of IL-12p40 Following Infection of Susceptible BALB/c Mice With Leishmania major

Leishmania major (L. major) parasites are intracellular parasites belong to the Trypanosomatidae family and are the causative agent of cutaneous leishmaniasis. This disease affects approximately 1.5 million per year worldwide and there is currently no prophylactic vaccine available. L. major is transmitted by the bite of an infected sandfly and has been considered for decades now as a mouse mod...

متن کامل

CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1β production

Deregulated CD8+ T cell cytotoxicity plays a central role in enhancing disease severity in several conditions. However, we have little understanding of the mechanisms by which immunopathology develops as a consequence of cytotoxicity. Using murine models of inflammation induced by the protozoan parasite leishmania, and data obtained from patients with cutaneous leishmaniasis, we uncovered a pre...

متن کامل

Partial Purification of a Potent Immunosuppressive Factor Excreted from Leishmania major Promastigote and Amastigote

Recent scientific evidence indicates that distinct patterns of susceptibility in BALB/c mice to Leishmania major infection are attributable to the differential expansion of distinct CD4+ T-cell subsets and their cytokines production. Production of the Th1 cytokine IFN-g is associated with resistance, whereas production of the Th2 cytokines IL-4 and IL-10 are associated with extreme susceptibili...

متن کامل

The role of IL-12 in maintaining resistance to Leishmania major.

IL-12p40 is required for the maintenance of resistance during Leishmania major infection. In this study, we addressed how IL-12 mediates this function. First, we demonstrated that both subunits of IL-12, p40 and p35, were required for continued resistance to L. major. Second, using IL-12, IL-4 doubly deficient mice, we investigated the possibility that IL-12 inhibits IL-4-induced outgrowth of T...

متن کامل

Immunization against Leishmania major infection in BALB/c mice using a subunit-based DNA vaccine derived from TSA, LmSTI1, KMP11, and LACK predominant antigens

Objective(s): To design a multivalent DNA vaccine encoding the most immunogenic regions of the Leishmania major antigens including TSA (Thiol-specific antioxidant protein), LmSTI1 (Leishmania major stress-inducible protein1), LACK (Leishmania homologue of receptors for activated C Kinase), and KMP11 (kinetoplastid membrane protein-11) on BALB/c mice.M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013